Ветряная электростанция на базе асинхронного двигателя

treugoma.ru › Домашний электрик › 

Ветряная электростанция на базе асинхронного двигателя

Вопрос о ветровых электрогенераторах в наше время, очень актуален. Многие европейские производители предлагают ветровые генераторы разной мощности, но стоят они не дешево. А вся система, включая ветровой электрогенератор, инвертор преобразования постоянного тока в переменный и аккумуляторные батареи, это очень дорогое удовольствие, которое вряд ли окупит себя, в ближайшее время использования. Такие ветровые установки не может себе позволить обычный потребитель электрической энергии.

 

Из всего сказанного, можно сделать вывод, что наиболее остро стоит вопрос об удешевлении получении электроэнергии из ветра.

 

При применении генераторов на постоянных магнитах, можно получить не очень большое напряжение, как правило, оно не превышает 10 В. Да и к тому же скорость ветра, это не постоянная величина. Установки на таких генераторах должны всегда снабжаться аккумуляторными батареями, и инвертором. Но исходя из того, наиболее оптимальные аккумуляторные батареи, это батареи 150 А/ч, то вряд ли кто захочет связываться с таким дорогим проектом (для примера аккумуляторная батарея танка ПТ-76 весит 65кг, и рассчитана на 140А/ч).

 

В роли генератора использовались и автомобильные генераторы и синхронные двигатели. Но в обеих вариантах один и тот же недостаток нужны слишком большие обороты ротора двигателя, а это в свою очередь приводит к увеличению передаточного числа редуктора, а значит и габаритов ветряного крыла. Так же можно добавить и нестабильность частоты работы и сложность стабилизации выходного напряжения, а в случае синхронного двигателя еще и больше габариты и масса. Для стабилизации выходного напряжение, можно использовать аккумуляторные батареи и инвертор, но это приведет к той схеме, которая сейчас используется европейскими производителями, о которой здесь не будет идти речи, потому что она очень дорогая.

 

В ходе долгих поисков и экспериментов, предпочтение было отдано генератору на базе асинхронного двигателя с короткозамкнутым ротором. При использовании данной схемы было выявлено много достоинств и всего один недостаток.

 

 

 

 

Достоинства: небольшие габариты и масса при достаточно большой мощности; нет необходимости в напряжении возбуждения; если использовать тихооборотный двигатель, то и мощность ротора можно уменьшить; выходная частота практически не зависит от скорости вращения ротора.

 

Недостаток: данный генератор нельзя перегружать.

 

Схема включения асинхронного двигателя с кроткозамкнутым ротором показана на рисунке №1. При вращении ротора двигателя остаточное магнитное поле действует на одну из обмоток статора. При этом возникает небольшое электрический ток, который заряжает один из конденсаторов С1-С3. Благодаря тому, что фаза напряжения на конденсаторе отстает на , на роторе возникает магнитное поле уже большей величины, которое действует на следующую обмотку. Соответственно следующий конденсатор зарядится на большее напряжение. Этот процесс продолжается до тех пор, пока ротор генератора не войдет в насыщение (1…1,15с) После этого можно включать автомат В2 и использовать вырабатываемую генератором энергию. Причем для нормальной работы двигателя в режиме генератора мощность нагрузки должна составлять не более 80 % примененного в качестве генератора двигателя. Остальные 20 % используются для поддержания напряжения на конденсаторах, т.е. поддержание генератора в рабочем состоянии. При превышении данного условия напряжение на конденсаторах исчезнет, а значит и исчезнет магнитное поле на якоре, что приведет к исчезновению напряжения на клеммах автомата В2. Причем это происходит практически мгновенно.

 

 

 

 

В этом есть свой недостаток и свои достоинства. Недостаток является в том, что повторная подача напряжения возможна только тогда, когда будет устранена причина перегрузки и отключен автомат В2. Генератор сонно войдет в рабочий режим (через 1…1,5с). После этого можно включать В2 и использовать энергию. К достоинству относят тот фактор, что генератор практически невозможно сжечь, так как напряжение на его клеммах исчезает мгновенно в течение 0,1…0,5с. Выходное напряжение имеет синусоидальную форму и полностью пригодно для дальнейшего использования. Выходная частота генератора 46…60 Гц, что в большинстве случаев достаточно для домашнего использования. Из-за нестабильности напряжения на выходе напряжения необходимо установить стабилизатор (описание схемы и работы описано в дополнительной статье).

 

Емкость добавочных конденсаторов указанна в таблице №1, на один киловатт указанной мощности мотора, а для работы с нагрузкой – добавочная емкость на каждый киловатт нагрузки.

 

Таблица №1 Емкость конденсаторов, включаемых в фазы, в микрофарадах на 1 кВт мощности.

 

Напряжение между фазами Основная емкость (мкФ)
При холостом ходе При активной нагрузке При реактивной нагрузке
127 В 40...50 10…20 50..60
220 В 12..15 3..6 1…2
380 В 4..5 1..2 5..6

 

К примеру, есть двигатель мощность 3 кВт. К нему предполагается подключить реактивную нагрузку (электродвигатель, сварочный аппарат), суммарной мощностью примерно 2 кВт. При этом мы хотим, что бы напряжение между фазами было 380. Значит, емкость конденсатора С1 составит (35)+ (26) микрофарад. Так как С1=С2=С3, то нам понадобится три конденсатора емкостью 30 мкФ. Если конденсаторов необходимой емкости нет, то можно соединить конденсаторы параллельно, меньшей емкости. Конденсаторы должны быть бумажные или метолобумажные на напряжение не ниже 450 В, а лучше на 650 В. Лучше включать генератор на напряжение между фазами 220 В, а между нулем и фазой 127 В. Это вызвано тем, что для нормальной работы генератора перекос фаз не должен превышать . При такой схеме, удастся максимально разгрузит генератор. Кроме того, питание осветительных ламп накаливания и некоторые нагревательные приборы лучше питать постоянным током.

 

 

 

 

 

 

Для генератора необходимо использовать тихооборотный двигатель двигатель с короткозамкнутым ротором. Лучше всего применить двигатель на 360…720 об/мин, но подойдет и двигатель на 910 об/мин. Это вызвано необходимостью вращать ротор с большей примерно в два раза скоростью, чем указанно в паспорте на двигатель, и уменьшением числа передачи редуктора.

 

Сама ветрогенераторная установка может быть выполнена в любой удобной для вас схеме. Здесь же предлагается следующая конструкция. Принцип работы показан на рисунке №3 и в объяснении не нуждается. Ветродвигатель (рисунок №4)состоит из ветряного крыла 1,опоры 2 и собственно генератора 3. Опора жестко забетонирована и укреплена тремя натяжными тросами 4. Опору можно изготовить из дерева, бетона, метала. Можно применить опору которую используют для передачи электричества на расстояние, или свою. В качестве растяжек лучше использовать стальной трос диаметром 10..12 мм. Костыли, за которые крепятся растяжки, необходимо хорошо забетонировать. Каркас крыльев ветродвигатель можно изготовить из труб диаметром 1дюйм, его чертеж показан на рисунке №5. Элероны можно изготовить из стального прутка диаметром 6мм. В качестве ведущего вола использовано толстостенная труба диаметром 2..2,5 дюйма, в нижний конец которой впрессован вал длинной 300…400мм. В нижнем конце вала сделана канавка под шкив. Подшипники взяты сферические с конусными зажимами марки 2000810 с соответствующим корпусом.

 

После сборки крыло необходимо сбалансировать. К опоре сбалансированное крыло крепиться любым удобным способом, но, главное, что бы крепление было достаточно жестким и надежным. Экспериментально было установлено, что лучшим материалом для обтягивания крыла служит полиэтиленовая пленка толщиной 80…120мкм. Она достаточно прочная, легка я дешевая позволяет отказаться от тормозного механизма, который, кстати, в данном случае неприемлем, так как при сильном ветре крыло будет уничтожено. Обтягивать полиэтиленовой пленкой нужно в несколько слоев спаивая по швам, паяльником через кусок полиэтиленовой пленки. Спаянный шов должен быть равным и прочным.

 

Для привода вала генератора применен редуктор. Можно использовать редуктор любой системы, кроме червячной. Как было уже сказано, вал генератора нужно вращать примерно с удвоенной скоростью, а вол ветродвигателя вращается со скоростью 500 об/мин при скорости ветра 5 м/с, Отсюда и ограничение на использование двигателя в качестве генератора. Наилучшим вариантом может быть двигатель на 360 об/мин, но можно и применить и двигатель на 720 об/мин. При использовании двигателя можно увеличить высоту крыла на 500 мм. Увеличивать крыло по ширине не рекомендуется , так как при этом уменьшается частота вращения, уменьшать то же не следует, так как при увеличении скорости вращения сильно уменьшиться мощность, причем закон уменьшения не линейный.

 

 

 

 

При подборе редуктора нужно руководствоваться следующим правилам: за номинальные обороты крыло ветродвигателя нужно брать величину 500 об/мин, что соответствует скорости ветра 5 м/с, частота вращения вала двигателя увеличивается на 2,3, далее путем несложных подсчетов получаем коэффициент передачи. Сам кронштейн легко прикрепить к опоре с помощью шести шпилек. Зубчатым редуктором крепление намного проще. Не рекомендуется делать вал ветродвигателя слишком длинным, так как его может попросту перекрутить. Всю конструкцию необходимо заземлить. Сопротивление заземление должно быть не более 2 Ом. У подножия необходимо поставить шкаф, в котором необходимо разместить конденсаторы С1-С3, автоматы В1-В2, диоды V1-V6, стабилизатор напряжения, автомат управления, четыре аккумулятора и мощный преобразователь напряжения для обеспечение энергией во время штилей. Автомат управления обеспечивает переключение цепей питания в зависимости от нагрузки и скорости ветра. Мощный преобразователь напряжения обеспечивает заряд аккумулятора во время работы генератора в холостом ходу а также питание сети от аккумуляторов при отсутствии ветра или сильно заниженном напряжении на генераторе. Когда нет напряжения а аккумулятора разряжены, автомат управления обеспечивает подачу энергии из штатной сети.

 

Кабель которым производится подключение генератора и силового шкафа, должен быть трехфазным с сечением жилы не более , Кабеля, которыми производится соединение шкафа с потребителями могут быть такими же. Шина заземления должна быть сечением не менее .

 

Внимание! Все работы по монтажу нужно производить при отключенном автомате В1 и разряженных конденсаторах С1-С3.


Опубликовать


Если вам понравилась эта статья, разместите ссылку у себя на сайте или форуме. Для этого скопируйте текст, расположенный ниже:

Ссылка на статью для форума (bbcodes):
[url=http://treugoma.ru/master/vetrynay-elektrostanciy-na-baze-asinhronnogo-dvigatela/]Ветряная электростанция на базе асинхронного двигателя[/url]
html ссылка:
<a target="_blank" title="Ветряная электростанция на базе асинхронного двигателя" href="http://treugoma.ru/master/vetrynay-elektrostanciy-na-baze-asinhronnogo-dvigatela/">Ветряная электростанция на базе асинхронного двигателя</a>


Поиск по сайту

© 2010 - 2024 treugoma.ru